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Chapter 1

Finset

1.1 Piecewise
Lemma 1 (prod ite not mem). Let s,t be finite sets of indices in ¢, and let f: « — M. Then
1, ifx et,
I}, oot - I
ves | f(z), otherwise 23,

Proof. We split the product over the disjoint union s = (s\ ¢) U (sNt).

1, ifxet B Ny
gs {f(x>’ otherwise (z[s[\tf( )> (zl:[ml)
= 1 f@.

TESs\t

The first equality holds because for any x € s\ ¢, the term is f(z), while for any = € sNt, the
term is 1. The product of ones is one. [

Lemma 2 (sum ite not mem). Let s,t be finite sets of indices in v, and let f: 1 — A be a
function to an additive commutative monoid. Then

0, ifret, /
Z {f(ﬂ?% otherwise Z f(@).

TES zres\t

Proof. We split the sum over the disjoint union s = (s \ ¢) U (s Nt).

0, ifzet .
; {f(:zc)7 otherwise (I;tf( )) * (z;t 0)
= f@.

xeS\t

The first equality holds because for any « € s\ ¢, the term is f(x), while for any 2 € s N ¢, the
term is 0. The sum of zeros is zero. O



Chapter 2

Orders and Abstract Reduction
Relations

2.1 Monomial Ideals and Dickson’s Lemma

Definition 3. Let r be a relation on M. Then r is called
1. reflexive if A(M) C r,
2. symmetric if r C 771,
. transitive if ror Cr,

3
4. antisymmetric if r N r~! C A(M),

ot

connex if r Ur~! = M x M,
irreflexive if A(M)Nr =9,
strictly antisymmetric if rNr~! = @,

an equivalence relation on M if r is reflexive, symmetric, and transitive,

© »®» Noe

a quasi-order (preorder) on M if r is reflexive and transitive,
10. a partial order on M if r is reflexive, transitive and antisymmetric,
11. a (linear) order on M if r is a connex partial order on M, and
12. a linear quasi-order on M if r is a connex quasi-order on M.
Definition 4. Let r be a relation on M with strict part r,, and let N C M.

1. Then an element a of N is called r-minimal (r-mazimal) in N if there is no b € N with
brya (with ar,b). For N = M the reference to N is omitted.

2. A strictly descending (strictly ascending) r-chain in M is an infinite sequence {a,, } ey of
elements of M such that a,, ., r,a, (such that a,r a,,;) for all n € N.



3. The relation r is called well-founded (noetherian) if every non-empty subset N of M
has an r-minimal (an r-maximal) element. r is a well-order on M if r is a well-founded
linear order on M.

Definition 5 (The “Antisymmetrization” of M). Let (M,<) be a preordered set. Define an
equivalence relation

~: Mx M — Prop, a~b <= (a<bAb<a).
We write [a] for the equivalence class of a, and denote the quotient by
Quot(M,~) = {la] | a € M}.
Definition 6 (Minimal elements and min—classes). Let N C M. An element b € N is called
manimal in N if
Vye N, y<b = b<uy.

We denote by
Minimal(N) = {be N |Vye N, y<b—b<y}

the set of all minimal elements of N. The min—classes of N are then
minClasses(N) = {[b] € Quot(M,~) | b € Minimal(N)}.

Definition 7. Let < be a quasi-order on M and let N C M. Then a subset B of IV is called a
Dickson basis, or simply basis of N w.r.t. <, if for every a € N there exists some b € B with
b<a.

1. We say that < has the Dickson property, or is a well-quasi-order(wqo), if every subset
N of M has a finite basis w.r.t. <.

2. A well partial order, or a wpo, is a wqo that is a proper ordering relation, i.e., it is
antisymmetric.

Proposition 8. Let < be a quasi-order on M with associated equivalence relation ~. Then the
following are equivalent:

1. < is a well-quasi-order.

2. Whenever {a,,},cy is a sequence of elements of M, then there exist i < j with a; < a;.

3. For every nonempty subset N of M, the number of min-classes in N is finite and non-zero.
Proof. O

Proposition 9. Let < be a well- quasi-order on M, and let {a,},cyn be @ sequence of elements
of M. Then there exists a strictly ascending sequence {n,};cn of natural numbers such that
Uy, Xy, foralli < j.

Proof. We define the sequence {n; },oy recursively, and by simultaneous induction on i we verify
the following properties:

1. a

n

<a, forallieN, and
i TR

2. for all i € N, the set {n € N | a, = a,} is infinite.



For i =0, let {by,...,b,} be a finite basis of the set {a,, | n € N}, and for each j with 1 < j <k,
set
B;={neN|b;<a,}.

Then szl B; = N by the choice of B. Since the union of finitely many finite sets is finite, we
can find a B; which is infinite. Moreover, b; = a,, for some m € N, and we set n, = m. For
i+ 1, we consider the set

U, ={a, | U, 2y 1y < n}.

By condition (ii) for 4, the set {n € N | a,, € U;} is infinite. Choosing some finite basis of U;, we
can, as before, find an element a,, in this basis such that a,, < a,, for infinitely many different
n € N, and we take n,,; = m. Conditions (i) and (ii) obviously continue to hold. It now follows
easily from condition (i) and the transitivity of < that {n,};cy has the desired property. O

Lemma 10. Let f,g € k[zq,...,x,] be nonzero polynomials. Then:
1. multideg(fg) = multideg(f) + multideg(g).
2. If f +¢g # 0, then multideg(f + g) < max(multideg(f), multideg(g)). If, in addition,

multideg(f) # multideg(g), then equality occurs.

Lemma 11. Let ¢ be an index set and s C ¢ a finite subset. For each i € s, let h; € k[, ..., z,].
Then the following inequality holds:

multideg (Z hl> < max {multideg(h;)}
1€S

1€ES
where the max is taken with respect to the monomial order.

Proof. Let M = max,.,{multideg(h;)}. Any monomial z* appearing in the sum > ies By must
be a monomial in at least one of the summands, say hio for some ¢, € s. By definition, the
multidegree of any such term is bounded by the multidegree of the polynomial it belongs to, so
b < multideg(h; ). Also by definition, multideg(h; ) < M. Therefore, b < M for any monomial
«? in the sum. This implies that the multidegree of the sum itself cannot exceed M. O
Lemma 12. Let I = (2 | a € A) be a monomial ideal. Then a monomial z° lies in I if and
only if ” is divisible by x for some a € A.

Proof. If 27 is a multiple of 2 for some a € A, then 2 € I by the definition of ideal. Conversely,
if 28 € I, then 2 = ijl hx®® | where h; € k[z,,...,z,] and a(i) € A. If we expand each h;
as a sum of terms, we obtain

S

P = Z hima“) — Z (Z ci,jxﬁ(i7j)> po(l) — Zci’jb@ﬂ(i,j)xa(i)_
i=1 1 7 ]

i=
O

Theorem 13. Let (N™,<’) be the direct product of n copies of the natural numbers (N, <)
with their natural ordering. Then (N™,<’) is a Dickson partially ordered set. More explicitly,
every subset S C N™ has a finite subset B such that for every (mq,...,m,) € S, there exists
(kyy...,k,) € B with

ki <m; forl<i<n.



Proof.

Theorem 14 (Dickson’s Lemma (MvPolynomial)). Let I = {(z%|a € A) C k[zq,...,x

monomial ideal. Then I can be written in the form I = (x®M) ... a(s)), where a(1), ..., a(s)

In particular, I has a finite basis.

Proof.



Chapter 3

Grobner Bases

3.1 Polynomial Reductions

Theorem 15 (Division Algorithm for Multivariate Polynomials). Let P be a subset of K[X] and
f € K[X]. Then there exists a normal form g € K[X] of f modulo P and a family & = {q,},cp
of elements of K[X] with

f= Z ¢,p+g and max{LT(gp)|p € P, q,p # 0} <LT(f).
peP

If P is finite, the ground field is computable, and the term order on T is decidable, then g and
{4, }pep can be computed from f and P.

Proof. O

3.2 Grobner Bases-Existence and Uniqueness

Definition 16 (Initial Ideal). Let I C k[zy, ..., x,] be an ideal other than {0}, and fix a monomial
ordering on k[zq,...,x,]. Then:

1. We denote by
LT(I) ={ca® |3 feI\{0} with LT(f) = ca“}.
2. We denote by (LT(I)) the ideal generated by the elements of LT(I).
Theorem 17. Let I C k[xq,...,x,] be an ideal different from {0}.
1. (LT(I)) is a monomial ideal.
2. There are gy,...,9; € I such that (LT(I)) = (LT(g;),...,LT(g;))-

Proof. 1. The leading monomials LM(g) of elements g € I \ {0} generate the monomial ideal
(LM(g) | g € I\ {0}). Since LM(g) and LT(g) differ by a nonzero constant, this ideal
equals (LT (g) | g € I\ {0}) = (LT(I)). Thus, (LT(I)) is a monomial ideal.

2. Since (LT(I)) is generated by the monomials LM(g) for ¢ € I \ {0}, Dickson’s Lemma
tells us that (LT(I)) = (LM(g,), ..., LM(g,)) for finitely many g, ..., g, € I. Since LM(g;)
differs from LT(g;) by a nonzero constant, it follows that (LT(I)) = (LT(g¢,),...,LT(g;)).

This completes the proof.
O



Definition 18. Fix a monomial order > on the polynomial ring k[xq,...,2,]. A finite subset
G ={9y,..-,9;} of an ideal I C k[zq,...,x,] different from {0} is said to be a Grobner basis
(or standard basis) for I if the ideal generated by the leading terms of the elements in G is

equal to the ideal generated by the leading terms of all elements in I. That is,

(LT(g1), -, LT(gy)) = (LT(I)),

where LT(I) = {LT(f) | f € I\{0}}. Using the convention that (@) = {0}, we define the empty
set @ to be the Grobner basis of the zero ideal {0}.

Proposition 19. Let I C k[zq,...,2,] be an ideal and let G = {gy,...,9,} be a Grobner basis
for I. Then given f € k[zq,...,x,] there is a unique v € k[xq, ..., x,] with the following two
properties:

n}

1. No term of r is divisible by any of LT(g;),...,LT(g,).
2. There is g € I such that f =g+ r.

In particular, r is the remainder on division of f by G mno matter how the elements of G are
listed when using the division algorithm.

Proof. The division algorithm gives f = ¢,¢9; + - + ¢,9, + r, where r satisfies (i). We can also
satisfy (ii) by setting ¢ = ¢; 91 ++-+¢,9; € I. This proves the existence of r. To prove uniqueness,
suppose f =g+ 1r =g’ + 1’ satisfy (i) and (ii). Then r — 1" = ¢’ — g € I, so that if r # r’, then
LT(r—r") € (LT(I)) = (LT(¢;), ..., LT(g,)). By Lemma 12, it follows that LT(r — ) is divisible
by some LT(g;). This is impossible since no term of r,r’ is divisible by one of LT(g;), ..., LT(g;).
Thus r — 7’ must be zero, and uniqueness is proved. The final part of the proposition follows
from the uniqueness of 7. O

Corollary 20 (Ideal Membership Problem). Let G = {gy,...,g,} be a Grobner basis for an ideal
I C k[xq,...,xz,] (with respect to a given monomial order >) and let [ € k[zq,...,x,]. Then
f €1 if and only if the remainder on division of f by G is zero.

fel < rem(f,G)=0.

Proof. If the remainder is zero, then we have already observed that f € I. Conversely, given
f €I, then f = f 4 0 satisfies the two conditions of Proposition 19. It follows that 0 is the
remainder of f on division by G. O

_F
Definition 21. We will write f for the remainder(normalform) on division of f by the ordered
s-tuple
F = (f1,., fs)-

If F' is a Grobner basis for the ideal (fy, ..., f,), then by Proposition 1 we may regard F' as a set
(without any particular order).

Definition 22. Let f,g € k[z4, ..., z,,] be nonzero polynomials.
1. If multideg(f) = a and multideg(g) = 3, then let

Y= (M), Y =max(a;, B;) for each i.
We call 27 the least common multiple of LM(f) and LM(g), written

7 = lem(LM(f), LM(g)).



2. The S-polynomial of f and g is the combination

vl x7

o’ T T

S(f,9) = g.

Lemma 23. Suppose we have a sum Z::l p;, where multideg(p;) = 6 € 2%, for all i. If
multideg(Zf:1 pi) < 4, then Zle p; @s a linear combination, with coefficients in k, of the
S-polynomials S(pj,p;) for 1 <j, 1 < s. Furthermore, each S(p;,p;) has multidegree < 4.

Proof. Let d; = LC(p,), so that d;x° is the leading term of p,. Since the sum Z:Zl p; has strictly

smaller multidegree, it follows easily that Z:Zl d; =0.
Next observe that since p; and p; have the same leading monomial, their S-polynomial reduces

to
1 1

S(pisp;) = =0 — 5P (1)
J d; d J
It follows that

s—1

1 1 1 1
d;S(pi,ps) = d (p —ps> +d <p —ps) + e
i:Zl ( 1 dl 1 d 2 d2 2 d

S S

1
=p1tpettpea— df(% + ot dyy)p,.

S

However, 25:1 d; = 0 implies d; + -+ d,_; = —d,, so that (2) reduces to

s—1
Zdzs(pmps) =p;+ -+ Py + D
i=1

Thus, ijl p; is a sum of S-polynomials of the desired form, and equation (1) makes it easy to
see that S(p;,p;) has multidegree < §. The lemma is proved. O

(4
™

] )gj have the same multidegree 0. Then

Lemma 24. Suppose that p; = Cixamgi and p; = ¢

S<pz7pj) = xéisz(gi? g])v
where x4 = lem(LM(g;), LM(g;))-
Proof. By hypothesis, multideg(p;) = multideg(p;) = d, which implies § = o' +multideg(g;) and
§ = a9 4+ multideg(g;). The leading terms are LT(p;) = ¢; LC(g;)2° and LT(p;) = ¢; LC(g;)°.

Let 7;; be the exponent of lem(LM(g;), LM(g;)).
On the one hand, the left-hand side simplifies to:

0 0
S(pi,p;) = L)Y T T,
z° (4) z° )
= o LC(gi)a:‘s (c;x® g;) — c LC(gj)x5 (le"a gj)
_ 1 xo‘mg- . 1 :Eo‘(j)g-.
LC(g;) * LC(g;) !



On the other hand, the right-hand side expands to:

s o x i i
a ’Y”S(givgj) = 20 ( )gi )9j>

LT(g; LT(g;
B 0 0
- LC(gi)JL‘mUItingw??) 9i — Lc(gj)xmultidcg(gj) gj
1 ) 1 .
_ d—multideg(g;) , __ d—multideg(g,;)
= €T i'g, €T g
LC(yg;) LC(Qj) /
_ 1 sy 1 2y
LC(g;) ‘ LC(Qj) ’
The two sides are equal, which completes the proof. O
Theorem 25 (Buchberger’s Criterion). Let I be a polynomial ideal in k[zy,...,x,]. Then a basis

G ={gy,-.-,9:} of I is a Grébner basis for I (with respect to a given monomial order >) if and
only if for all pairs i # j, the remainder on division of the S-polynomial S(g;,g;) by G (listed in
some order) is zero.

Vi # j, rem(s(gi’gj)7G) =0.

Proof. =: If G is a Grobner basis, then since S(g;, g;) € I, the remainder on division by G is
zero by Corollary 20.
<: Let f € I be nonzero. We will show that LT(f) € (LT(g,),-..,LT(g;)) as follows. Write

t
fzzhigia hzek[xh’xn]
i=1

From Lemma 10, it follows that
multideg(f) < max(multideg(h,g;) | h,9; # 0). (3)

The strategy of the proof is to pick the most efficient representation of f, meaning that among
all expressions f = Zi:l h;g;, we pick one for which

d = max(multideg(h,g;) | h;9; # 0)

is minimal. The minimal § exists by the well-ordering property of our monomial ordering. By
(3), it follows that multideg(f) < 6.

If equality occurs, then multideg(f) = multideg(h,g,;) for some i. This easily implies that
LT(f) is divisible by LT(g;). Then LT(f) € (LT(g,), ..., LT(g;)), which is what we want to prove.

It remains to consider the case when the minimal 0 satisfies multideg(f) < 6. We will use
S(g;, gj)iGo for i # j to find a new expression for f that decreases §. This will contradict the
minimality of § and complete the proof.

Given an expression f = 2221 h;g; with minimal §, we begin by isolating the part of the sum
where multidegree § occurs:

f= Z higi + Z higi (4)

multideg(h;g;)=0 multideg(h;g;)<d
= Z LT (h;)g; + Z (hi = LT(h;))g; + Z hig;-
multideg(h;g;)=0 multideg(h;g;)=0 multideg(h;g,;)<0



The monomials appearing in the second and third sums on the second line all have multidegree
< 6. Then multideg(f) < 0 means that the first sum on the second line also has multidegree
< 4.

The key to decreasing d is to rewrite the first sum in two stages: use Lemma 23 to rewrite the
first sum in terms of S-polynomials, and then use S(g;, gj)iGO to rewrite the S-polynomials
without cancellation.

To express the first sum on the second line of (4) using S-polynomials, note that

LT(h;)g; (5)
multideg(h;g;)=9

satisfies the hypothesis of Lemma 23 since each p; = LT(h,)g; has multidegree 6 and the sum
has multidegree < §. Hence, the first sum is a linear combination with coefficients in &k of the
S-polynomials S(p,, pj). In Exercise 24, you will verify that

S(p;p;) = 2°"15(g;,95),

where 277 = lem(LM(g;), LM(g;)). It follows that the first sum (5) is a linear combination of
S(9;,9;) for certain pairs (i, 7).

Consider one of these S-polynomials S(g;,g;). Since S(g;, gj)iGO, the division algorithm
(Theorem 3 of §3) gives an expression

gzagj ZAlgla (6)

where A, € k[z,...,z,] and

multideg(A,;g;) < multideg(S(g;, 9;)) (7)

when A,g, # 0. Now multiply each side of (6) by 2%~ to obtain

5 ’Y”S gug] ZBlgla (8)

where B; = x° i1 A;. Then (7) implies that when B,g; # 0, we have
multideg(B,g;) < multideg(m(s_"“fS(gi,gj)) <46 (9)

since LT(S(g;,9,)) <lem(LM(g,),LM(g;)) = 275 by Exercise 7.
It follows that the first sum (5) is a linear combination of certain z°~1.5(g,, g,), each of which
satisfies (8) and (9). Hence we can write the first sum as

t
S e =Y b 10
multideg(h;g;)=9 =1
with the property that when Elgl =+ 0, we have
multideg(B,g,) < 4. (11)

Substituting (10) into the second line of (4) gives an expression for f as a polynomial combination
of the g¢;,’s where all terms have multidegree < §. This contradicts the minimality of ¢ and
completes the proof. O

10



Definition 26. Fix a monomial order and let G = {gq,...,9;} C k[zy,...,2,]. Given f €

rrn

G
klxq,...,x,], we say that f reduces to zero modulo G, written f — 0, if f has a standard

rn
representation

f=Ag+Agp, A €kly, ],
which means that whenever A,g, # 0, we have
deg(f) = deg(4;9;).

Theorem 27 (Buchberger’s Algorithm). Let I = (fy,..., f,) # {0} be a polynomial ideal. Then
a Grébner basis for I can be constructed in a finite number of steps by the following algorithm:

Input : FF=(f1,..., f,)
Output : A Grobner basis G = (g, ..., g;) for I, with F C G

G:=F
REPEAT
G =G
FOR each pair {p,q}, p # ¢ in G' DO

’

r:=S(p,q)
IF r # 0 THEN G := G U {r}

UNTIL G =G’
RETURN &

Proof. We begin with some frequently used notation. If G = {gy, ..., g, }, then (G) and (LT(G))
will denote the following ideals:

(G) = {91590,  (LT(G)) = (LT(g1), .., LT(gy))-

Turning to the proof of the theorem, we first show that G C I holds at every stage of the
algorithm. This is true initially, and whenever we enlarge GG, we do so by adding the remainder

-G
r=2S(p,q) forp,q€ G' CG. Thus, if G C I, then p,q € I and, hence, S(p,q) € I, and since
we are dividing by G' C I, we get G U {r} C I. We also note that G contains the given basis F'
of I, so that GG is actually a basis of I.

’

The algorithm terminates when G = G’, which means that r = S(p,q) =0 forall p,q € G.
Hence G is a Grobner basis of (G) = I by Theorem 6 of §6.

It remains to prove that the algorithm terminates. We need to consider what happens after
each pass through the main loop. The set G consists of G (the old G) together with the nonzero
remainders of S-polynomials of elements of G’. Then

(LT(G")) € (LT(G)). (3.1)

Since G’ C G. Furthermore, if G’ # G, we claim that (LT(G")) is strictly smaller than (LT(G)).
To see this, suppose that a nonzero remainder r of an S-polynomial has been adjoined to G.
Since r is a remainder on division by G, LT(r) is not divisible by the leading terms of elements
of G', and thus LT(r) ¢ (LT(G")) by Lemma 2 of §4. Yet LT(r) € (LT(G)), which proves our

claim.

11



By (1), the ideals (LT(G")) from successive iterations of the loop form an ascending chain
of ideals in k[zq,...,2,]. Thus, the ACC (Theorem 7 of §5) implies that after a finite number
of iterations the chain will stabilize, so that (LT(G’)) = (LT(G)) must happen eventually. By
the previous paragraph, this implies that G’ = G, so that the algorithm must terminate after a
finite number of steps. O

Lemma 28. Let G be a Grobner basis of I C klzq,...,x,]|. Let p € G be a polynomial such that
LT(p) € (LT(G\{p})). Then G\ {p} is also a Grobner basis for I.

Proof. We know that (LT(G)) = (LT(I)). If LT(p) € (LT(G \ {p})), then we have (LT(G \
{p})) = (LT(G)). By definition, it follows that G \ {p} is also a Grébner basis for I. O

12



Chapter 4

The State Polytope

4.1 Basic Concepts of Polyhedral Geometry

In the first half of this chapter we review some basic concepts from polyhedral geometry. In the
second half we introduce the state polytope of an ideal I. It has the property that its vertices
are in a natural bijection with the distinct initial ideals in_(I).

Definition 29 (Polyhedron). A polyhedron is a finite intersection of closed half-spaces in R™.
Thus a polyhedron P can be written as P = {x € R” : A-x < b}, where A is a matrix with n
columns.

If b = 0 then there exist vectors uy,...,u,, € R” such that
P =pos({uy,...,u,,}) :=={\u; ++ A0, : A\, ...\, eR_}. (4.1)
Definition 30 (Polyhedral Cone). A polyhedron of the form (4.1) is called a (polyhedral) cone.

Here and throughout this book R, denotes the non-negative reals. The polar of a cone C' is
defined as
C*={weR":w-c<0forallceC}.

Definition 31 (Polytope). A polyhedron @ which is bounded is called a polytope. Every polytope
Q@ can be written as the convex hull of a finite set of points

Q = conv({vy,...,v,,}) = {Z Vit A, € R+’Z/\i = 1} . (4.2)
i=1 i=1

Here are two examples of 3-dimensional polytopes: The cube and the octahedron.
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