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Chapter 1

Finset

1.1 Piecewise
Lemma 1 (prod ite not mem). Let 𝑠, 𝑡 be finite sets of indices in 𝜄, and let 𝑓 ∶ 𝜄 → 𝑀 . Then

∏
𝑥∈𝑠

{1, if 𝑥 ∈ 𝑡,
𝑓(𝑥), otherwise

= ∏
𝑥∈𝑠∖𝑡

𝑓(𝑥).

Proof. We split the product over the disjoint union 𝑠 = (𝑠 ∖ 𝑡) ∪ (𝑠 ∩ 𝑡).

∏
𝑥∈𝑠

{1, if 𝑥 ∈ 𝑡
𝑓(𝑥), otherwise

= ( ∏
𝑥∈𝑠∖𝑡

𝑓(𝑥)) ⋅ ( ∏
𝑥∈𝑠∩𝑡

1)

= ∏
𝑥∈𝑠∖𝑡

𝑓(𝑥).

The first equality holds because for any 𝑥 ∈ 𝑠 ∖ 𝑡, the term is 𝑓(𝑥), while for any 𝑥 ∈ 𝑠 ∩ 𝑡, the
term is 1. The product of ones is one.

Lemma 2 (sum ite not mem). Let 𝑠, 𝑡 be finite sets of indices in 𝜄, and let 𝑓 ∶ 𝜄 → 𝐴 be a
function to an additive commutative monoid. Then

∑
𝑥∈𝑠

{0, if 𝑥 ∈ 𝑡,
𝑓(𝑥), otherwise

= ∑
𝑥∈𝑠∖𝑡

𝑓(𝑥).

Proof. We split the sum over the disjoint union 𝑠 = (𝑠 ∖ 𝑡) ∪ (𝑠 ∩ 𝑡).

∑
𝑥∈𝑠

{0, if 𝑥 ∈ 𝑡
𝑓(𝑥), otherwise

= ( ∑
𝑥∈𝑠∖𝑡

𝑓(𝑥)) + ( ∑
𝑥∈𝑠∩𝑡

0)

= ∑
𝑥∈𝑠∖𝑡

𝑓(𝑥).

The first equality holds because for any 𝑥 ∈ 𝑠 ∖ 𝑡, the term is 𝑓(𝑥), while for any 𝑥 ∈ 𝑠 ∩ 𝑡, the
term is 0. The sum of zeros is zero.
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Chapter 2

Orders and Abstract Reduction
Relations

2.1 Monomial Ideals and Dickson’s Lemma
Definition 3. Let 𝑟 be a relation on 𝑀 . Then 𝑟 is called

1. reflexive if Δ(𝑀) ⊆ 𝑟,

2. symmetric if 𝑟 ⊆ 𝑟−1,

3. transitive if 𝑟 ∘ 𝑟 ⊆ 𝑟,

4. antisymmetric if 𝑟 ∩ 𝑟−1 ⊆ Δ(𝑀),
5. connex if 𝑟 ∪ 𝑟−1 = 𝑀 × 𝑀 ,

6. irreflexive if Δ(𝑀) ∩ 𝑟 = ∅,

7. strictly antisymmetric if 𝑟 ∩ 𝑟−1 = ∅,

8. an equivalence relation on 𝑀 if 𝑟 is reflexive, symmetric, and transitive,

9. a quasi-order (preorder) on 𝑀 if 𝑟 is reflexive and transitive,

10. a partial order on 𝑀 if 𝑟 is reflexive, transitive and antisymmetric,

11. a (linear) order on 𝑀 if 𝑟 is a connex partial order on 𝑀 , and

12. a linear quasi-order on 𝑀 if 𝑟 is a connex quasi-order on 𝑀 .

Definition 4. Let 𝑟 be a relation on 𝑀 with strict part 𝑟𝑠, and let 𝑁 ⊆ 𝑀 .

1. Then an element 𝑎 of 𝑁 is called 𝑟-minimal (𝑟-maximal) in 𝑁 if there is no 𝑏 ∈ 𝑁 with
𝑏 𝑟𝑠 𝑎 (with 𝑎 𝑟𝑠 𝑏). For 𝑁 = 𝑀 the reference to 𝑁 is omitted.

2. A strictly descending (strictly ascending) 𝑟-chain in 𝑀 is an infinite sequence {𝑎𝑛}𝑛∈ℕ of
elements of 𝑀 such that 𝑎𝑛+1 𝑟𝑠 𝑎𝑛 (such that 𝑎𝑛 𝑟𝑠 𝑎𝑛+1) for all 𝑛 ∈ ℕ.
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3. The relation 𝑟 is called well-founded (noetherian) if every non-empty subset 𝑁 of 𝑀
has an 𝑟-minimal (an 𝑟-maximal) element. 𝑟 is a well-order on 𝑀 if 𝑟 is a well-founded
linear order on 𝑀 .

Definition 5 (The “Antisymmetrization” of 𝑀). Let (𝑀, ≤) be a preordered set. Define an
equivalence relation

∼ ∶ 𝑀 × 𝑀 → Prop, 𝑎 ∼ 𝑏 ⟺ (𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎).

We write [𝑎] for the equivalence class of 𝑎, and denote the quotient by

Quot(𝑀, ∼) = { [𝑎] ∣ 𝑎 ∈ 𝑀}.

Definition 6 (Minimal elements and min–classes). Let 𝑁 ⊆ 𝑀 . An element 𝑏 ∈ 𝑁 is called
minimal in 𝑁 if

∀ 𝑦 ∈ 𝑁, 𝑦 ≤ 𝑏 ⟹ 𝑏 ≤ 𝑦.
We denote by

Minimal(𝑁) = { 𝑏 ∈ 𝑁 ∣ ∀ 𝑦 ∈ 𝑁, 𝑦 ≤ 𝑏 → 𝑏 ≤ 𝑦}
the set of all minimal elements of 𝑁 . The min–classes of 𝑁 are then

minClasses(𝑁) = { [𝑏] ∈ Quot(𝑀, ∼) ∣ 𝑏 ∈ Minimal(𝑁)}.

Definition 7. Let ⪯ be a quasi-order on 𝑀 and let 𝑁 ⊆ 𝑀 . Then a subset 𝐵 of 𝑁 is called a
Dickson basis, or simply basis of 𝑁 w.r.t. ⪯, if for every 𝑎 ∈ 𝑁 there exists some 𝑏 ∈ 𝐵 with
𝑏 ⪯ 𝑎.

1. We say that ⪯ has the Dickson property, or is a well-quasi-order(wqo), if every subset
𝑁 of 𝑀 has a finite basis w.r.t. ⪯.

2. A well partial order, or a wpo, is a wqo that is a proper ordering relation, i.e., it is
antisymmetric.

Proposition 8. Let ⪯ be a quasi-order on 𝑀 with associated equivalence relation ∼. Then the
following are equivalent:

1. ⪯ is a well-quasi-order.

2. Whenever {𝑎𝑛}𝑛∈ℕ is a sequence of elements of 𝑀 , then there exist 𝑖 < 𝑗 with 𝑎𝑖 ⪯ 𝑎𝑗.

3. For every nonempty subset 𝑁 of 𝑀 , the number of min-classes in 𝑁 is finite and non-zero.

Proof.

Proposition 9. Let ⪯ be a well- quasi-order on 𝑀 , and let {𝑎𝑛}𝑛∈ℕ be a sequence of elements
of 𝑀 . Then there exists a strictly ascending sequence {𝑛𝑖}𝑖∈ℕ of natural numbers such that
𝑎𝑛𝑖

⪯ 𝑎𝑛𝑗
for all 𝑖 < 𝑗.

Proof. We define the sequence {𝑛𝑖}𝑖∈ℕ recursively, and by simultaneous induction on 𝑖 we verify
the following properties:

1. 𝑎𝑛𝑖
⪯ 𝑎𝑛𝑖+1

for all 𝑖 ∈ ℕ, and

2. for all 𝑖 ∈ ℕ, the set {𝑛 ∈ ℕ ∣ 𝑎𝑛𝑖
⪯ 𝑎𝑛} is infinite.
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For 𝑖 = 0, let {𝑏1, … , 𝑏𝑘} be a finite basis of the set {𝑎𝑛 ∣ 𝑛 ∈ ℕ}, and for each 𝑗 with 1 ≤ 𝑗 ≤ 𝑘,
set

𝐵𝑗 = {𝑛 ∈ ℕ ∣ 𝑏𝑗 ⪯ 𝑎𝑛}.

Then ⋃𝑘
𝑗=1 𝐵𝑗 = ℕ by the choice of 𝐵. Since the union of finitely many finite sets is finite, we

can find a 𝐵𝑗 which is infinite. Moreover, 𝑏𝑗 = 𝑎𝑚 for some 𝑚 ∈ ℕ, and we set 𝑛0 = 𝑚. For
𝑖 + 1, we consider the set

𝑈𝑖 = {𝑎𝑛 ∣ 𝑎𝑛𝑖
⪯ 𝑎𝑛, 𝑛𝑖 < 𝑛}.

By condition (ii) for 𝑖, the set {𝑛 ∈ ℕ ∣ 𝑎𝑛 ∈ 𝑈𝑖} is infinite. Choosing some finite basis of 𝑈𝑖, we
can, as before, find an element 𝑎𝑚 in this basis such that 𝑎𝑚 ⪯ 𝑎𝑛 for infinitely many different
𝑛 ∈ ℕ, and we take 𝑛𝑖+1 = 𝑚. Conditions (i) and (ii) obviously continue to hold. It now follows
easily from condition (i) and the transitivity of ⪯ that {𝑛𝑖}𝑖∈ℕ has the desired property.

Lemma 10. Let 𝑓, 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛] be nonzero polynomials. Then:

1. multideg(𝑓𝑔) = multideg(𝑓) + multideg(𝑔).
2. If 𝑓 + 𝑔 ≠ 0, then multideg(𝑓 + 𝑔) ≤ max(multideg(𝑓), multideg(𝑔)). If, in addition,

multideg(𝑓) ≠ multideg(𝑔), then equality occurs.

Lemma 11. Let 𝜄 be an index set and 𝑠 ⊂ 𝜄 a finite subset. For each 𝑖 ∈ 𝑠, let ℎ𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛].
Then the following inequality holds:

multideg (∑
𝑖∈𝑠

ℎ𝑖) ≤ max
𝑖∈𝑠

{multideg(ℎ𝑖)}

where the max is taken with respect to the monomial order.

Proof. Let 𝑀 = max𝑖∈𝑠{multideg(ℎ𝑖)}. Any monomial 𝑥𝑏 appearing in the sum ∑𝑖∈𝑠 ℎ𝑖 must
be a monomial in at least one of the summands, say ℎ𝑖0

for some 𝑖0 ∈ 𝑠. By definition, the
multidegree of any such term is bounded by the multidegree of the polynomial it belongs to, so
𝑏 ≤ multideg(ℎ𝑖0

). Also by definition, multideg(ℎ𝑖0
) ≤ 𝑀 . Therefore, 𝑏 ≤ 𝑀 for any monomial

𝑥𝑏 in the sum. This implies that the multidegree of the sum itself cannot exceed 𝑀 .

Lemma 12. Let 𝐼 = ⟨𝑥𝛼 ∣ 𝛼 ∈ 𝐴⟩ be a monomial ideal. Then a monomial 𝑥𝛽 lies in 𝐼 if and
only if 𝑥𝛽 is divisible by 𝑥𝛼 for some 𝛼 ∈ 𝐴.

Proof. If 𝑥𝛽 is a multiple of 𝑥𝛼 for some 𝛼 ∈ 𝐴, then 𝑥𝛽 ∈ 𝐼 by the definition of ideal. Conversely,
if 𝑥𝛽 ∈ 𝐼 , then 𝑥𝛽 = ∑𝑠

𝑖=1 ℎ𝑖𝑥𝛼(𝑖), where ℎ𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛] and 𝛼(𝑖) ∈ 𝐴. If we expand each ℎ𝑖
as a sum of terms, we obtain

𝑥𝛽 =
𝑠

∑
𝑖=1

ℎ𝑖𝑥𝛼(𝑖) =
𝑠

∑
𝑖=1

(∑
𝑗

𝑐𝑖,𝑗𝑥𝛽(𝑖,𝑗)) 𝑥𝛼(𝑖) = ∑
𝑖,𝑗

𝑐𝑖,𝑗𝑥𝛽(𝑖,𝑗)𝑥𝛼(𝑖).

Theorem 13. Let (ℕ𝑛, ≤′) be the direct product of 𝑛 copies of the natural numbers (ℕ, ≤)
with their natural ordering. Then (ℕ𝑛, ≤′) is a Dickson partially ordered set. More explicitly,
every subset 𝑆 ⊆ ℕ𝑛 has a finite subset 𝐵 such that for every (𝑚1, … , 𝑚𝑛) ∈ 𝑆, there exists
(𝑘1, … , 𝑘𝑛) ∈ 𝐵 with

𝑘𝑖 ≤ 𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
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Proof.

Theorem 14 (Dickson’s Lemma (MvPolynomial)). Let 𝐼 = ⟨𝑥𝛼|𝛼 ∈ 𝐴⟩ ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be a
monomial ideal. Then 𝐼 can be written in the form 𝐼 = ⟨𝑥𝛼(1), … , 𝛼(𝑠)⟩, where 𝛼(1), … , 𝛼(𝑠) ∈ 𝐴.
In particular, 𝐼 has a finite basis.

Proof.
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Chapter 3

Gröbner Bases

3.1 Polynomial Reductions
Theorem 15 (Division Algorithm for Multivariate Polynomials). Let 𝑃 be a subset of 𝐾[𝑋] and
𝑓 ∈ 𝐾[𝑋]. Then there exists a normal form 𝑔 ∈ 𝐾[𝑋] of 𝑓 modulo 𝑃 and a family ℱ = {𝑞𝑝}𝑝∈𝑃
of elements of 𝐾[𝑋] with

𝑓 = ∑
𝑝∈𝑃

𝑞𝑝 𝑝 + 𝑔 and max{LT(𝑞𝑝𝑝) ∣ 𝑝 ∈ 𝑃 , 𝑞𝑝𝑝 ≠ 0} ≤ LT(𝑓).

If 𝑃 is finite, the ground field is computable, and the term order on 𝑇 is decidable, then 𝑔 and
{𝑞𝑝}𝑝∈𝑃 can be computed from 𝑓 and 𝑃 .
Proof.

3.2 Gröbner Bases-Existence and Uniqueness
Definition 16 (Initial Ideal). Let 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be an ideal other than {0}, and fix a monomial
ordering on 𝑘[𝑥1, … , 𝑥𝑛]. Then:

1. We denote by
LT(𝐼) = { 𝑐 𝑥𝛼 ∣ ∃ 𝑓 ∈ 𝐼 ∖ {0} with LT(𝑓) = 𝑐 𝑥𝛼}.

2. We denote by ⟨LT(𝐼)⟩ the ideal generated by the elements of LT(𝐼).
Theorem 17. Let 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be an ideal different from {0}.

1. ⟨LT(𝐼)⟩ is a monomial ideal.

2. There are 𝑔1, … , 𝑔𝑡 ∈ 𝐼 such that ⟨LT(𝐼)⟩ = ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩.
Proof. 1. The leading monomials LM(𝑔) of elements 𝑔 ∈ 𝐼 ∖ {0} generate the monomial ideal

⟨LM(𝑔) ∣ 𝑔 ∈ 𝐼 ∖ {0}⟩. Since LM(𝑔) and LT(𝑔) differ by a nonzero constant, this ideal
equals ⟨LT(𝑔) ∣ 𝑔 ∈ 𝐼 ∖ {0}⟩ = ⟨LT(𝐼)⟩. Thus, ⟨LT(𝐼)⟩ is a monomial ideal.

2. Since ⟨LT(𝐼)⟩ is generated by the monomials LM(𝑔) for 𝑔 ∈ 𝐼 ∖ {0}, Dickson’s Lemma
tells us that ⟨LT(𝐼)⟩ = ⟨LM(𝑔1), … , LM(𝑔𝑡)⟩ for finitely many 𝑔1, … , 𝑔𝑡 ∈ 𝐼 . Since LM(𝑔𝑖)
differs from LT(𝑔𝑖) by a nonzero constant, it follows that ⟨LT(𝐼)⟩ = ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩.
This completes the proof.
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Definition 18. Fix a monomial order > on the polynomial ring 𝑘[𝑥1, … , 𝑥𝑛]. A finite subset
𝐺 = {𝑔1, … , 𝑔𝑡} of an ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] different from {0} is said to be a Gröbner basis
(or standard basis) for 𝐼 if the ideal generated by the leading terms of the elements in 𝐺 is
equal to the ideal generated by the leading terms of all elements in 𝐼 . That is,

⟨LT(𝑔1), … , LT(𝑔𝑡)⟩ = ⟨LT(𝐼)⟩,

where LT(𝐼) = {LT(𝑓) ∣ 𝑓 ∈ 𝐼 ∖{0}}. Using the convention that ⟨∅⟩ = {0}, we define the empty
set ∅ to be the Gröbner basis of the zero ideal {0}.

Proposition 19. Let 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be an ideal and let 𝐺 = {𝑔1, … , 𝑔𝑡} be a Gröbner basis
for 𝐼. Then given 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] there is a unique 𝑟 ∈ 𝑘[𝑥1, … , 𝑥𝑛] with the following two
properties:

1. No term of 𝑟 is divisible by any of LT(𝑔1), … , LT(𝑔𝑡).
2. There is 𝑔 ∈ 𝐼 such that 𝑓 = 𝑔 + 𝑟.

In particular, 𝑟 is the remainder on division of 𝑓 by 𝐺 no matter how the elements of 𝐺 are
listed when using the division algorithm.

Proof. The division algorithm gives 𝑓 = 𝑞1𝑔1 + ⋯ + 𝑞𝑡𝑔𝑡 + 𝑟, where 𝑟 satisfies (i). We can also
satisfy (ii) by setting 𝑔 = 𝑞1𝑔1 +⋯+𝑞𝑡𝑔𝑡 ∈ 𝐼 . This proves the existence of 𝑟. To prove uniqueness,
suppose 𝑓 = 𝑔 + 𝑟 = 𝑔′ + 𝑟′ satisfy (i) and (ii). Then 𝑟 − 𝑟′ = 𝑔′ − 𝑔 ∈ 𝐼 , so that if 𝑟 ≠ 𝑟′, then
LT(𝑟 − 𝑟′) ∈ ⟨LT(𝐼)⟩ = ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩. By Lemma 12, it follows that LT(𝑟 − 𝑟′) is divisible
by some LT(𝑔𝑖). This is impossible since no term of 𝑟, 𝑟′ is divisible by one of LT(𝑔1), … , LT(𝑔𝑡).
Thus 𝑟 − 𝑟′ must be zero, and uniqueness is proved. The final part of the proposition follows
from the uniqueness of 𝑟.

Corollary 20 (Ideal Membership Problem). Let 𝐺 = {𝑔1, … , 𝑔𝑡} be a Gröbner basis for an ideal
𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] (with respect to a given monomial order >) and let 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛]. Then
𝑓 ∈ 𝐼 if and only if the remainder on division of 𝑓 by 𝐺 is zero.

𝑓 ∈ 𝐼 ⟺ rem(𝑓, 𝐺) = 0.

Proof. If the remainder is zero, then we have already observed that 𝑓 ∈ 𝐼 . Conversely, given
𝑓 ∈ 𝐼 , then 𝑓 = 𝑓 + 0 satisfies the two conditions of Proposition 19. It follows that 0 is the
remainder of 𝑓 on division by 𝐺.

Definition 21. We will write 𝑓𝐹
for the remainder(normalform) on division of 𝑓 by the ordered

𝑠-tuple
𝐹 = (𝑓1, … , 𝑓𝑠).

If 𝐹 is a Gröbner basis for the ideal ⟨𝑓1, … , 𝑓𝑠⟩, then by Proposition 1 we may regard 𝐹 as a set
(without any particular order).

Definition 22. Let 𝑓, 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛] be nonzero polynomials.

1. If multideg(𝑓) = 𝛼 and multideg(𝑔) = 𝛽, then let

𝛾 = (𝛾1, … , 𝛾𝑛), 𝛾𝑖 = max(𝛼𝑖, 𝛽𝑖) for each 𝑖.

We call 𝑥𝛾 the least common multiple of LM(𝑓) and LM(𝑔), written

𝑥𝛾 = lcm(LM(𝑓), LM(𝑔)).
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2. The 𝑆-polynomial of 𝑓 and 𝑔 is the combination

𝑆(𝑓, 𝑔) = 𝑥𝛾

LT(𝑓) 𝑓 − 𝑥𝛾

LT(𝑔) 𝑔.

Lemma 23. Suppose we have a sum ∑𝑠
𝑖=1 𝑝𝑖, where multideg(𝑝𝑖) = 𝛿 ∈ ℤ𝑛

≥0 for all 𝑖. If
multideg(∑𝑠

𝑖=1 𝑝𝑖) < 𝛿, then ∑𝑠
𝑖=1 𝑝𝑖 is a linear combination, with coefficients in 𝑘, of the

𝑆-polynomials 𝑆(𝑝𝑗, 𝑝𝑙) for 1 ≤ 𝑗, 𝑙 ≤ 𝑠. Furthermore, each 𝑆(𝑝𝑗, 𝑝𝑙) has multidegree < 𝛿.

Proof. Let 𝑑𝑖 = LC(𝑝𝑖), so that 𝑑𝑖𝑥𝛿 is the leading term of 𝑝𝑖. Since the sum ∑𝑠
𝑖=1 𝑝𝑖 has strictly

smaller multidegree, it follows easily that ∑𝑠
𝑖=1 𝑑𝑖 = 0.

Next observe that since 𝑝𝑖 and 𝑝𝑗 have the same leading monomial, their S-polynomial reduces
to

𝑆(𝑝𝑖, 𝑝𝑗) = 1
𝑑𝑖

𝑝𝑖 − 1
𝑑𝑗

𝑝𝑗. (1)

It follows that
𝑠−1
∑
𝑖=1

𝑑𝑖𝑆(𝑝𝑖, 𝑝𝑠) = 𝑑1 ( 1
𝑑1

𝑝1 − 1
𝑑𝑠

𝑝𝑠) + 𝑑2 ( 1
𝑑2

𝑝2 − 1
𝑑𝑠

𝑝𝑠) + ⋯

= 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑠−1 − 1
𝑑𝑠

(𝑑1 + ⋯ + 𝑑𝑠−1)𝑝𝑠.
(2)

However, ∑𝑠
𝑖=1 𝑑𝑖 = 0 implies 𝑑1 + ⋯ + 𝑑𝑠−1 = −𝑑𝑠, so that (2) reduces to

𝑠−1
∑
𝑖=1

𝑑𝑖𝑆(𝑝𝑖, 𝑝𝑠) = 𝑝1 + ⋯ + 𝑝𝑠−1 + 𝑝𝑠.

Thus, ∑𝑠
𝑖=1 𝑝𝑖 is a sum of S-polynomials of the desired form, and equation (1) makes it easy to

see that 𝑆(𝑝𝑖, 𝑝𝑗) has multidegree < 𝛿. The lemma is proved.

Lemma 24. Suppose that 𝑝𝑖 = 𝑐𝑖𝑥𝛼(𝑖)𝑔𝑖 and 𝑝𝑗 = 𝑐𝑗𝑥𝛼(𝑗)𝑔𝑗 have the same multidegree 𝛿. Then

𝑆(𝑝𝑖, 𝑝𝑗) = 𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗),

where 𝑥𝛾𝑖𝑗 = lcm(LM(𝑔𝑖), LM(𝑔𝑗)).

Proof. By hypothesis, multideg(𝑝𝑖) = multideg(𝑝𝑗) = 𝛿, which implies 𝛿 = 𝛼(𝑖)+multideg(𝑔𝑖) and
𝛿 = 𝛼(𝑗) + multideg(𝑔𝑗). The leading terms are LT(𝑝𝑖) = 𝑐𝑖 LC(𝑔𝑖)𝑥𝛿 and LT(𝑝𝑗) = 𝑐𝑗 LC(𝑔𝑗)𝑥𝛿.
Let 𝛾𝑖𝑗 be the exponent of lcm(LM(𝑔𝑖), LM(𝑔𝑗)).

On the one hand, the left-hand side simplifies to:

𝑆(𝑝𝑖, 𝑝𝑗) = 𝑥𝛿

LT(𝑝𝑖)
𝑝𝑖 − 𝑥𝛿

LT(𝑝𝑗)
𝑝𝑗

= 𝑥𝛿

𝑐𝑖 LC(𝑔𝑖)𝑥𝛿 (𝑐𝑖𝑥𝛼(𝑖)𝑔𝑖) − 𝑥𝛿

𝑐𝑗 LC(𝑔𝑗)𝑥𝛿 (𝑐𝑗𝑥𝛼(𝑗)𝑔𝑗)

= 1
LC(𝑔𝑖)

𝑥𝛼(𝑖)𝑔𝑖 − 1
LC(𝑔𝑗)

𝑥𝛼(𝑗)𝑔𝑗.
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On the other hand, the right-hand side expands to:

𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗) = 𝑥𝛿−𝛾𝑖𝑗 ( 𝑥𝛾𝑖𝑗

LT(𝑔𝑖)
𝑔𝑖 − 𝑥𝛾𝑖𝑗

LT(𝑔𝑗)
𝑔𝑗)

= 𝑥𝛿

LC(𝑔𝑖)𝑥multideg(𝑔𝑖) 𝑔𝑖 − 𝑥𝛿

LC(𝑔𝑗)𝑥multideg(𝑔𝑗) 𝑔𝑗

= 1
LC(𝑔𝑖)

𝑥𝛿−multideg(𝑔𝑖)𝑔𝑖 − 1
LC(𝑔𝑗)

𝑥𝛿−multideg(𝑔𝑗)𝑔𝑗

= 1
LC(𝑔𝑖)

𝑥𝛼(𝑖)𝑔𝑖 − 1
LC(𝑔𝑗)

𝑥𝛼(𝑗)𝑔𝑗.

The two sides are equal, which completes the proof.

Theorem 25 (Buchberger’s Criterion). Let 𝐼 be a polynomial ideal in 𝑘[𝑥1, … , 𝑥𝑛]. Then a basis
𝐺 = {𝑔1, … , 𝑔𝑡} of 𝐼 is a Gröbner basis for 𝐼 (with respect to a given monomial order >) if and
only if for all pairs 𝑖 ≠ 𝑗, the remainder on division of the 𝑆-polynomial 𝑆(𝑔𝑖, 𝑔𝑗) by 𝐺 (listed in
some order) is zero.

∀𝑖 ≠ 𝑗, rem(𝑆(𝑔𝑖, 𝑔𝑗), 𝐺) = 0.
Proof. ⇒: If 𝐺 is a Gröbner basis, then since 𝑆(𝑔𝑖, 𝑔𝑗) ∈ 𝐼 , the remainder on division by 𝐺 is
zero by Corollary 20.

⇐: Let 𝑓 ∈ 𝐼 be nonzero. We will show that LT(𝑓) ∈ ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩ as follows. Write

𝑓 =
𝑡

∑
𝑖=1

ℎ𝑖𝑔𝑖, ℎ𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛].

From Lemma 10, it follows that

multideg(𝑓) ≤ max(multideg(ℎ𝑖𝑔𝑖) ∣ ℎ𝑖𝑔𝑖 ≠ 0). (3)

The strategy of the proof is to pick the most efficient representation of 𝑓 , meaning that among
all expressions 𝑓 = ∑𝑡

𝑖=1 ℎ𝑖𝑔𝑖, we pick one for which

𝛿 = max(multideg(ℎ𝑖𝑔𝑖) ∣ ℎ𝑖𝑔𝑖 ≠ 0)

is minimal. The minimal 𝛿 exists by the well-ordering property of our monomial ordering. By
(3), it follows that multideg(𝑓) ≤ 𝛿.

If equality occurs, then multideg(𝑓) = multideg(ℎ𝑖𝑔𝑖) for some 𝑖. This easily implies that
LT(𝑓) is divisible by LT(𝑔𝑖). Then LT(𝑓) ∈ ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩, which is what we want to prove.

It remains to consider the case when the minimal 𝛿 satisfies multideg(𝑓) < 𝛿. We will use
𝑆(𝑔𝑖, 𝑔𝑗) 𝐺0 for 𝑖 ≠ 𝑗 to find a new expression for 𝑓 that decreases 𝛿. This will contradict the
minimality of 𝛿 and complete the proof.

Given an expression 𝑓 = ∑𝑡
𝑖=1 ℎ𝑖𝑔𝑖 with minimal 𝛿, we begin by isolating the part of the sum

where multidegree 𝛿 occurs:

𝑓 = ∑
multideg(ℎ𝑖𝑔𝑖)=𝛿

ℎ𝑖𝑔𝑖 + ∑
multideg(ℎ𝑖𝑔𝑖)<𝛿

ℎ𝑖𝑔𝑖 (4)

= ∑
multideg(ℎ𝑖𝑔𝑖)=𝛿

LT(ℎ𝑖)𝑔𝑖 + ∑
multideg(ℎ𝑖𝑔𝑖)=𝛿

(ℎ𝑖 − LT(ℎ𝑖))𝑔𝑖 + ∑
multideg(ℎ𝑖𝑔𝑖)<𝛿

ℎ𝑖𝑔𝑖.
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The monomials appearing in the second and third sums on the second line all have multidegree
< 𝛿. Then multideg(𝑓) < 𝛿 means that the first sum on the second line also has multidegree
< 𝛿.

The key to decreasing 𝛿 is to rewrite the first sum in two stages: use Lemma 23 to rewrite the
first sum in terms of S-polynomials, and then use 𝑆(𝑔𝑖, 𝑔𝑗) 𝐺0 to rewrite the S-polynomials
without cancellation.

To express the first sum on the second line of (4) using S-polynomials, note that

∑
multideg(ℎ𝑖𝑔𝑖)=𝛿

LT(ℎ𝑖)𝑔𝑖 (5)

satisfies the hypothesis of Lemma 23 since each 𝑝𝑖 = LT(ℎ𝑖)𝑔𝑖 has multidegree 𝛿 and the sum
has multidegree < 𝛿. Hence, the first sum is a linear combination with coefficients in 𝑘 of the
S-polynomials 𝑆(𝑝𝑖, 𝑝𝑗). In Exercise 24, you will verify that

𝑆(𝑝𝑖, 𝑝𝑗) = 𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗),

where 𝑥𝛾𝑖𝑗 = lcm(LM(𝑔𝑖), LM(𝑔𝑗)). It follows that the first sum (5) is a linear combination of
𝑆(𝑔𝑖, 𝑔𝑗) for certain pairs (𝑖, 𝑗).

Consider one of these S-polynomials 𝑆(𝑔𝑖, 𝑔𝑗). Since 𝑆(𝑔𝑖, 𝑔𝑗) 𝐺0, the division algorithm
(Theorem 3 of §3) gives an expression

𝑆(𝑔𝑖, 𝑔𝑗) =
𝑡

∑
𝑙=1

𝐴𝑙𝑔𝑙, (6)

where 𝐴𝑙 ∈ 𝑘[𝑥1, … , 𝑥𝑛] and

multideg(𝐴𝑙𝑔𝑙) ≤ multideg(𝑆(𝑔𝑖, 𝑔𝑗)) (7)

when 𝐴𝑙𝑔𝑙 ≠ 0. Now multiply each side of (6) by 𝑥𝛿−𝛾𝑖𝑗 to obtain

𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗) =
𝑡

∑
𝑙=1

𝐵𝑙𝑔𝑙, (8)

where 𝐵𝑙 = 𝑥𝛿−𝛾𝑖𝑗𝐴𝑙. Then (7) implies that when 𝐵𝑙𝑔𝑙 ≠ 0, we have

multideg(𝐵𝑙𝑔𝑙) ≤ multideg(𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗)) < 𝛿 (9)

since LT(𝑆(𝑔𝑖, 𝑔𝑗)) < lcm(LM(𝑔𝑖), LM(𝑔𝑗)) = 𝑥𝛾𝑖𝑗 by Exercise 7.
It follows that the first sum (5) is a linear combination of certain 𝑥𝛿−𝛾𝑖𝑗𝑆(𝑔𝑖, 𝑔𝑗), each of which

satisfies (8) and (9). Hence we can write the first sum as

∑
multideg(ℎ𝑖𝑔𝑖)=𝛿

LT(ℎ𝑖)𝑔𝑖 =
𝑡

∑
𝑙=1

𝐵̃𝑙𝑔𝑙 (10)

with the property that when 𝐵̃𝑙𝑔𝑙 ≠ 0, we have

multideg(𝐵̃𝑙𝑔𝑙) < 𝛿. (11)

Substituting (10) into the second line of (4) gives an expression for 𝑓 as a polynomial combination
of the 𝑔𝑖’s where all terms have multidegree < 𝛿. This contradicts the minimality of 𝛿 and
completes the proof.
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Definition 26. Fix a monomial order and let 𝐺 = {𝑔1, … , 𝑔𝑡} ⊆ 𝑘[𝑥1, … , 𝑥𝑛]. Given 𝑓 ∈
𝑘[𝑥1, … , 𝑥𝑛], we say that 𝑓 reduces to zero modulo 𝐺, written 𝑓 𝐺−→ 0, if 𝑓 has a standard
representation

𝑓 = 𝐴1𝑔1 + ⋯ 𝐴𝑡𝑔𝑡, 𝐴𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛],
which means that whenever 𝐴𝑖𝑔𝑖 ≠ 0, we have

deg(𝑓) ≥ deg(𝐴𝑖𝑔𝑖).

Theorem 27 (Buchberger’s Algorithm). Let 𝐼 = ⟨𝑓1, … , 𝑓𝑠⟩ ≠ {0} be a polynomial ideal. Then
a Gröbner basis for 𝐼 can be constructed in a finite number of steps by the following algorithm:

Input : 𝐹 = (𝑓1, … , 𝑓𝑠)
Output : A Gröbner basis 𝐺 = (𝑔1, … , 𝑔𝑡) for 𝐼 , with 𝐹 ⊆ 𝐺

𝐺 ∶= 𝐹
REPEAT

𝐺′ ∶= 𝐺
FOR each pair {𝑝, 𝑞}, 𝑝 ≠ 𝑞 in 𝐺′ DO

𝑟 ∶= 𝑆(𝑝, 𝑞)𝐺′

IF 𝑟 ≠ 0 THEN 𝐺 ∶= 𝐺 ∪ {𝑟}
UNTIL 𝐺 = 𝐺′

RETURN 𝐺
Proof. We begin with some frequently used notation. If 𝐺 = {𝑔1, … , 𝑔𝑡}, then ⟨𝐺⟩ and ⟨LT(𝐺)⟩
will denote the following ideals:

⟨𝐺⟩ = ⟨𝑔1, … , 𝑔𝑡⟩, ⟨LT(𝐺)⟩ = ⟨LT(𝑔1), … , LT(𝑔𝑡)⟩.

Turning to the proof of the theorem, we first show that 𝐺 ⊆ 𝐼 holds at every stage of the
algorithm. This is true initially, and whenever we enlarge 𝐺, we do so by adding the remainder
𝑟 = 𝑆(𝑝, 𝑞)𝐺′

for 𝑝, 𝑞 ∈ 𝐺′ ⊆ 𝐺. Thus, if 𝐺 ⊆ 𝐼 , then 𝑝, 𝑞 ∈ 𝐼 and, hence, 𝑆(𝑝, 𝑞) ∈ 𝐼 , and since
we are dividing by 𝐺′ ⊆ 𝐼 , we get 𝐺 ∪ {𝑟} ⊆ 𝐼 . We also note that 𝐺 contains the given basis 𝐹
of 𝐼 , so that 𝐺 is actually a basis of 𝐼 .

The algorithm terminates when 𝐺 = 𝐺′, which means that 𝑟 = 𝑆(𝑝, 𝑞)𝐺′

= 0 for all 𝑝, 𝑞 ∈ 𝐺.
Hence 𝐺 is a Gröbner basis of ⟨𝐺⟩ = 𝐼 by Theorem 6 of §6.

It remains to prove that the algorithm terminates. We need to consider what happens after
each pass through the main loop. The set 𝐺 consists of 𝐺′ (the old 𝐺) together with the nonzero
remainders of 𝑆-polynomials of elements of 𝐺′. Then

⟨LT(𝐺′)⟩ ⊆ ⟨LT(𝐺)⟩. (3.1)

Since 𝐺′ ⊆ 𝐺. Furthermore, if 𝐺′ ≠ 𝐺, we claim that ⟨LT(𝐺′)⟩ is strictly smaller than ⟨LT(𝐺)⟩.
To see this, suppose that a nonzero remainder 𝑟 of an 𝑆-polynomial has been adjoined to 𝐺.
Since 𝑟 is a remainder on division by 𝐺′, LT(𝑟) is not divisible by the leading terms of elements
of 𝐺′, and thus LT(𝑟) ∉ ⟨LT(𝐺′)⟩ by Lemma 2 of §4. Yet LT(𝑟) ∈ ⟨LT(𝐺)⟩, which proves our
claim.
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By (1), the ideals ⟨LT(𝐺′)⟩ from successive iterations of the loop form an ascending chain
of ideals in 𝑘[𝑥1, … , 𝑥𝑛]. Thus, the ACC (Theorem 7 of §5) implies that after a finite number
of iterations the chain will stabilize, so that ⟨LT(𝐺′)⟩ = ⟨LT(𝐺)⟩ must happen eventually. By
the previous paragraph, this implies that 𝐺′ = 𝐺, so that the algorithm must terminate after a
finite number of steps.

Lemma 28. Let 𝐺 be a Gröbner basis of 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛]. Let 𝑝 ∈ 𝐺 be a polynomial such that
LT(𝑝) ∈ ⟨LT(𝐺 ∖ {𝑝})⟩. Then 𝐺 ∖ {𝑝} is also a Gröbner basis for 𝐼.

Proof. We know that ⟨LT(𝐺)⟩ = ⟨LT(𝐼)⟩. If LT(𝑝) ∈ ⟨LT(𝐺 ∖ {𝑝})⟩, then we have ⟨LT(𝐺 ∖
{𝑝})⟩ = ⟨LT(𝐺)⟩. By definition, it follows that 𝐺 ∖ {𝑝} is also a Gröbner basis for 𝐼 .
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Chapter 4

The State Polytope

4.1 Basic Concepts of Polyhedral Geometry
In the first half of this chapter we review some basic concepts from polyhedral geometry. In the
second half we introduce the state polytope of an ideal 𝐼 . It has the property that its vertices
are in a natural bijection with the distinct initial ideals in<(𝐼).
Definition 29 (Polyhedron). A polyhedron is a finite intersection of closed half-spaces in ℝ𝑛.
Thus a polyhedron 𝑃 can be written as 𝑃 = {x ∈ ℝ𝑛 ∶ 𝐴 ⋅ x ≤ b}, where 𝐴 is a matrix with 𝑛
columns.

If b = 0 then there exist vectors u1, … , u𝑚 ∈ ℝ𝑛 such that

𝑃 = pos({u1, … , u𝑚}) ∶= {𝜆1u1 + ⋯ + 𝜆𝑚u𝑚 ∶ 𝜆1, … , 𝜆𝑚 ∈ ℝ+}. (4.1)

Definition 30 (Polyhedral Cone). A polyhedron of the form (4.1) is called a (polyhedral) cone.

Here and throughout this book ℝ+ denotes the non-negative reals. The polar of a cone 𝐶 is
defined as

𝐶∗ = {𝜔 ∈ ℝ𝑛 ∶ 𝜔 ⋅ c ≤ 0 for all c ∈ 𝐶}.
Definition 31 (Polytope). A polyhedron 𝑄 which is bounded is called a polytope. Every polytope
𝑄 can be written as the convex hull of a finite set of points

𝑄 = conv({v1, … , v𝑚}) ∶= {
𝑚

∑
𝑖=1

𝜆𝑖v𝑖 ∶ 𝜆1, … , 𝜆𝑚 ∈ ℝ+,
𝑚

∑
𝑖=1

𝜆𝑖 = 1} . (4.2)

Here are two examples of 3-dimensional polytopes: The cube and the octahedron.
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